Mathématiques Dossier de révision Printemps 2020

Partie 1: Les fonctions

Rappels

Liste des fonctions usuelles

- (1) Fonction « constante » : f(x) = k
- (2) Fonction « identité » : f(x) = x
- (3) Fonction « carré » : $f(x) = x^2$
- (4) Fonction « cube » : $f(x) = x^3$
- (5) Fonction « inverse » : $f(x) = \frac{1}{x}$
- (6) Fonction « racine carrée » : $f(x) = \sqrt{x}$

- (7) Fonction « racine cubique » : $f(x) = \sqrt[3]{x}$
- (8) Fonction « valeur absolue » : f(x) = |x|
- (9) Fonction « sinus » : $f(x) = \sin(x)$
- (10) Fonction « cosinus » : $f(x) = \cos(x)$
- (11) Fonction « tangente » : f(x) = tg(x)
- (12) Fonction « cotangente » : $f(x) = \cot g(x)$

1/3

Transformations graphiques

On note f_0 la fonction de référence utilisée.

Transformation graphique	Notation	Transformation de l'expression
Translation horizontale de \boldsymbol{k} unités	$t_{(k;0)}$	$f(x) = f_0(x - k)$
Translation verticale de k unités	$t_{(0;k)}$	$f(x) = f_0(x) + k$
Affinité horizontale de rapport k	$A_{\mathcal{O}_{\mathcal{Y}};k}$	$f(x) = f_0\left(\frac{1}{k} \cdot x\right)$
Affinité verticale de rapport k	$A_{\mathcal{O}_{\mathcal{X}};k}$	$f(x) = k \cdot f_0(x)$
Symétrie orthogonale d'axe $\mathcal{O}_{\mathcal{Y}}$	$s_{\mathcal{O}_{\mathcal{Y}}}$	$f(x) = f_0(-x)$
Symétrie orthogonale d'axe \mathcal{O}_x	$s_{\mathcal{O}_{x}}$	$f(x) = -f_0(x)$
Symétrie orthogonale d'axe $\mathcal{O}_{\mathcal{Y}}$ des parties négatives du graphique	$s_{\mathcal{O}_{\mathcal{X}};G^-}$	$f(x) = f_0(x) $

Mme Delleur

Opérations sur les fonctions

On donne deux fonctions f et g

Opération	Définition	CE	Graphiquement
Somme	s(x) = f(x) + g(x)	/	Additionner les ordonnées de f et g
Différence	d(x) = f(x) - g(x)	/	Soustraire les ordonnées de g à celles de f
Produit	$p(x) = f(x) \cdot g(x)$	/	Multiplier les ordonnées de f et g
Quotient	$q(x) = \frac{f(x)}{g(x)}$	$g(x) \neq 0$	Diviser les ordonnées de f par celles de g
Composition	$(f \circ g)(x) = f(g(x))$	1) $x \in dom(g)$ 2) $g(x) \in dom(f)$	/

Conditions d'existences

(1) Si la fonction présente un dénominateur D(x), alors la CE est : $D(x) \neq 0$

(2) Si la fonction contient une racine carrée $\sqrt{R(x)}$, alors la CE est : $R(x) \ge 0$

Exercices

(1) Détermine le domaine de définition de chacune des fonctions suivantes :

(a)
$$f(x) = \frac{5}{4x^2 - 3x}$$

(e)
$$f(x) = x^5 - 4x^3 + x - 2$$

(b)
$$f(x) = \frac{x-1}{2x^2-x-1}$$

(f)
$$f(x) = \sqrt{\frac{x-3}{x+2}}$$

(c)
$$f(x) = \sqrt[3]{x+1}$$

(g)
$$f(x) = \sqrt{3 - 7x}$$

(d)
$$f(x) = \frac{3x-7}{2x+1}$$

(h)
$$g(x) = \frac{\sqrt{x-3}}{x+2}$$

(2) On donne les fonctions f, g, h, i définies par

$$f(x) = x - 4$$
; $g(x) = \frac{3}{x}$; $h(x) = \sqrt{x}$; $i(x) = x^2 + 1$

(a) Détermine le domaine de définition des fonctions f, g, h, i.

(b) Détermine les expressions analytiques et les domaines de définition des fonctions

$$f \circ g$$
; $g \circ i$; $h \circ f$; $f \circ g \circ h$; $i \circ f$

(c) Représente les fonctions f (en bleu), h (en noir), f+g (en rouge) et $f\cdot g$ (en vert) dans un même repère orthonormé.

Remarque : Tu peux utiliser Geogebra pour vérifier tes constructions APRÈS avoir essayé de résoudre l'exercice « à la main ».

Mme Delleur 2/3

(3) Décompose les fonctions suivantes avec des fonctions usuelles :

(a)
$$f(x) = (5x + 3)^2$$

(d)
$$f(x) = |3x^2 - 2x - 1|$$

(b)
$$f(x) = \sqrt[3]{2x - 3}$$

(e)
$$f(x) = \sqrt{(x-2)^3 + 1}$$

(c)
$$f(x) = \frac{1}{(x+1)^3}$$

(f)
$$f(x) = 7 - \frac{1}{(2x+3)^2}$$